8 ESEMPIO   Sia

\begin{displaymath}\begin{array}{cccl}
\varphi: & \mathrm{K}^{n+1} & \longrighta...
...a_1,\ldots,a_n) & \longmapsto & (0,a_1,\ldots,a_n)
\end{array}\end{displaymath}

dove $\mathbf{W}$ è l'iperpiano $x_0=0$ in $\mathrm{K}^{n+1}.$Tale applicazione è lineare, ma non iniettiva. Infatti $\ker \varphi =\{
(a_0,0,\ldots,0):a_0 \in \mathrm{K} \} \neq \{ (0,0,\ldots,0)\} .$ Quindi $\mathbf{P(\ker \varphi)}=\{ [1,0,\ldots,0]\};$ inoltre $\mathbf{P(W)}=H_0.$
Definiamo allora l'applicazione

\begin{displaymath}\begin{array}{cccl}
f': & \mathbf{P^n} \setminus \{ [1,0,\ld...
...,a_1,\ldots,a_n] & \longmapsto & [0,a_1,\ldots,a_n]
\end{array}\end{displaymath}

Notiamo che, nell'esempio 11 della sezione ''Cono proiettante un sottinsieme'', $f'$ era stata data come esempio di proiezione di centro il punto $[1,0,\ldots,0]$ sull'iperpiano $H_0.$

PAGINA PRECEDENTE INIZIO PAGINA PAGINA SUCCESSIVA