Dimostrazione
Sia uno spazio
.
Se
e
,
esistono
due intorni
e
di
e
rispettivamente, tali che
.
Ma questo è assurdo poiché
,
.
Dunque
.
Viceversa siano
distinti. Si ha
.
Per ipotesi esiste allora
tale che
.
D'altra parte
per cui
.
Si ha allora
,
da cui segue
,
dove
e
sono due intorni di
e
rispettivamente. Dunque
è
.