Esercizio 1

Dato X = {a, b, c, d} con la topologia t = {Æ, X, {a}, {a, b}, {c, d}, {a, c, d}}, trovare i chiusi in tale topologia.

 

 

 

Esercizio 2

Trovare uno spazio topologico (X, t) tale che t sia diversa dalla topologia banale e dalla discreta e tale che ogni aperto sia anche chiuso.

 

 

 

 

Esercizio 3

Date le topologie su R:

t 1 = {Æ, R} È {(a, +)}aÎ R

t 2 = {Æ, R} È {[a, +)}aÎ R È {(a, + )}aÎ R

Si provi che la famiglia t 2 è la famiglia dei chiusi di una (altra) topologia su R, mentre ciò non è vero per t 1.