Esercizio 28   Sia

\begin{displaymath}\begin{array}{cccc}f:&\mathbb{Z}\times\mathbb{Z} &\longrighta...
...Z}\times\mathbb{Z}\\
&(x,y)&\longmapsto&(3x-4y,0).\end{array}\end{displaymath}

a)
Provare che $f$ è un omomorfismo.
b)
Provare che $Im f=\mathbb{Z}\times \{0\}$.
c)
Determinare $\ker f$.
d)
Esistono in $\mathbb{Z}\times\mathbb{Z} /\ker f
$ elementi di periodo finito diversi dall'elemento neutro?

 

previous up