Soluzione Esercizio 5

 

            \begin{align}
\lim_{x \to 1} \frac{x}{x-1} - \frac{1}{\ln x}
& = \lim_{x \to 1} \frac{x \ln x - x + 1}{(x-1) \ln x} \\
& = \xrightarrow{l'H \hat{o} pital} \lim_{x \to 1} \frac{\ln x}{\frac{x-1}{x} + \ln x}\\
& = \lim_{x \to 1} \frac{x \ln x}{x - 1 + x \ln x}  \\
& = \xrightarrow{l'H \hat{o} pital} \lim_{x \to 1} \frac{1 + \ln x}{2 + \ln x}  \\
& = \frac{1}{2},
\end{align}