Esempio    

$\mathcal C:5x^2+y^2+2xy+4x+6y+1=0$, ha come matrici

\begin{displaymath}
\mathrm A=\left(
\begin{array}{ccc}
5 & 1 & 2\\
1 & 1...
...ft(
\begin{array}{cc}
5 & 1\\
1 & 1
\end{array}
\right)
\end{displaymath}
 
 
$\mathcal C:x^2+\pi y^2+2\sqrt{2}xy+8y=1$, ha come matrici
\begin{displaymath}
\mathrm A=\left(
\begin{array}{ccc}
1 & \sqrt 2 & 0 \\
...
...ay}{cc}
1 & \sqrt 2\\
\sqrt 2 & \pi
\end{array}
\right)
\end{displaymath}
 
 
$\mathcal C:\alpha x^2=2\gamma y$, ha come matrici
\begin{displaymath}
\mathrm A=\left(
\begin{array}{rrr}
\alpha & 0 & 0\\
...
...egin{array}{cc}
\alpha & 0\\
0& 0
\end{array}
\right).
\end{displaymath}